

Copyright © 2012 by Shell Global Solutions (US) Inc.

Royal Dutch Shell Document Classification: Unrestricted

Successfully bootstrapping a large scalable Scrum

practice at Royal Dutch Shell

David Segonds

Technical and Competitive IT

Shell Global Solutions (US), Inc.

Houston, USA

d.segonds@shell.com

We will present the saga of a successful transformation from a

struggling software development group to a scalable Scrum

practice within Royal Dutch Shell. This group of sixty individuals

encountered many obstacles on their journey to carry on the

development of a large, 25 year old, legacy application. You will

see how, over two years, we implemented a set of organizational,

technological, procedural, and cultural changes to lead this group

forward. Finally, we will present our vision to further strengthen

and accelerate this value delivery system.

Enterprise Scrum, legacy software, organizational changes,

quality assurance team bootstrapping, Scrum scalability, agile

I. INTRODUCTION

This paper describes the two-year journey, from January
2010 to December 2011, of the Subsurface Software
Interpretation and Visualization group (SIVI) at Royal Dutch
Shell (Shell). SIVI is composed of approximately sixty
individuals, primarily located on two sites in Houston, Texas.
SIVI is also contracting some of its software development
operations to a couple of firms in Europe and in the USA. SIVI
is part of the Subsurface Software directorate (SSW) at Shell.

A. The product

SIVI is delivering a complex set of functionalities that we
will call GeoSigns/nDI

1
 herein. Geophysicists and Geologists

(G&Gs) in Shell are using those applications to interpret
geophysical data and build models of the earth subsurface to
better understand hydrocarbons reservoirs.

GeoSigns/nDI is built upon 123DI, the previous generation
of proprietary subsurface interpretation tools. Both generations
of tools share the same code base but while 123DI is restricted
to operate on the Linux operating system, GeoSigns/nDI can
also operate on Microsoft Windows operating system.
GeoSigns/nDI has additional features that are the results of
proprietary research conducted in other parts of Shell.

SIVI and its predecessors developed 123DI underlying
technologies over the course of two decades. By 1997, 123DI
was the de facto standard within Shell in North America.
Between 1999 and 2006, the user base quickly grew to

1
 GeoSigns is a registered trademark of Shell Trademark

Management BV

innovators and early adopters [2] all around the world. In turn,
those individuals, in their respective regions, successfully
championed 123DI to an early and even late majority of end-
users as a replacement to third-party applications. At that time,
SIVI was nimble and very responsive to end-user needs.

B. The challenge

However, during the first decade of this century, the needs
of the enterprise changed. There was a strategic move to
Microsoft Windows and a need to consolidate and productize
some of the research conducted in other parts of the
organization. In response, Shell started funding the
development of GeoSigns/nDI in late 2007.

During the same period, it appears that the user population
evolved and became more sensitive to flaws and quirkiness in
internally developed software. Upper management expectations
also changed and there was a need for more predictability in
delivery and deployment.

Those new expectations were not necessary aligned with
SIVI's modus operandi and SIVI embarked on a transformation
journey from a small product development team to a
professional software delivery group.

C. The ground truth

By those measures, in December 2009, after two years of
development, the GeoSigns/nDI project was not doing well.
Only version 1.0 had been delivered and it was so incomplete
that only about thirty end-users worldwide were willing to play
and experiment with it, compared to the thousand end-users for
the previous generation of product. Work on version 2.0 was
underway, but no delivery date had been set nor was any in
sight. The team had a mountain of work to do. This included a
daunting list of features that needed to be delivered under the
programme funding in effect, but it also included a dismaying
backlog of defects. To make matters worse, neither software
features nor defects had been fully prioritized. Not only was the
work somewhat disorganized, but the organization of the team
itself needed improvement. The whole process used for
software development, even though it was adequate in the past,
seemed only to pretend to mimic software engineering best
practice necessary to meet the new expectations. Programme
governance was dysfunctional, seeming to provide only
hindrance and no help to the project.

Successfully bootstrapping a large scalable Scrum practice at Royal Dutch Shell

Copyright © 2012 by Shell Global Solutions (US) Inc. 2

Royal Dutch Shell Document Classification: Unrestricted

As part of a company-wide reorganization, named
transition 2009, every level of management affecting the
project was replaced. The team feared for its existence. They
knew that they were far behind on delivery aspirations, but they
had been taxed by expensive decisions in which they had not
participated, like the transition to a new geological database
and move to the Windows Vista platform. The team felt that
upper management had only criticized them for the adverse
consequences of these and similar decisions.

Moreover, in early 2010, the Subsurface Software
Engineering Excellent Group (SSEE) contracted Construx
Software, a Seattle based company to conduct an
organizational assessment of SSW. SSEE is another component
of SSW whose purpose is to continuously improve software
development practices for this directorate. This was the second
annual assessment and the report highlighted that:

 Developer unit testing was widely used but often
considered expendable under schedule pressure.
System and integration testing was overly focused on
narrow use cases and professional testing was largely
missing.

 SSW’s agile software projects were using a wide
variety of practices and did not consistently include
some recommended best practices for this type of
project.

 Product backlogs were not always ready for
development and excluded critical work items. The
criterion for completion was not always clearly
defined. Scrum teams were not always empowered as
teams and teams were not making full use of sprint
retrospectives.

 Effective project management relies on effective
estimation practices. SSW’s estimates did not account
for all necessary work, product backlogs were not
effectively estimated over the duration of a project, and
estimates did not have sufficient input from the
developers performing the work.

While this assessment was referring to Scrum [6], it is
important to mention that SIVI, for the most part, was only
very loosely following this methodology. For example, the
daily Scrums were happening semi-weekly at best, iteration
planning was often absent, and sometimes requirements were
ready in the middle of iteration after the developers started
coding. If SIVI were to implement a Scrum practice, it would
have to rebuild from the ground up, and start by explaining to
upper management that even though the team claimed to
practice Scrum, they actually were not.

On a positive note, the assessment also highlighted that a
number of the staff had worked on the same or related
applications for numerous years and had developed an
extensive understanding of how Shell’s systems work. SSW
had staff that joined from other parts of the company and
brought with them important background knowledge about
Shell’s operations and user community needs. The level of
support from G&Gs, and the depth and breadth of developer

domain knowledge remained strong assets to meet business
objectives.

At that point, it was clear that SIVI’s mandate was not only
to deliver a robust version 2.0 but also to develop long-term
production capabilities to better serve enterprise and G&Gs
community needs, while leveraging the extensive support from
those G&Gs and its software developers’ domain knowledge.

II. THE TRANSFORMATION

A. Spring 2010: Early stages and version 2.0

In February 2010, during a departmental workshop, the
leadership team asked SIVI to commit to a release backlog for
version 2.0, effectively narrowing the scope. Also, a quality
criterion based on number of defects was agreed upon. During
the first few months of 2010, SIVI focused on implementing
this restricted scope and fixing defects. After a stressful few
months, the team delivered version 2.0 in May 2010.

During that time, SIVI’s leadership team, which as a
consequence of transition 2009 was mostly new, got
acquainted with the group and attempted to formulate a plan of
action.

The leadership team is composed of: a general manager in
charge of SIVI; a product manager in charge of the product
content and overall ownership through a team of G&Gs; a
planning manager in charge of scheduling, finance, and
communications to management; a deployment manager in
charge of third-tier support, training, and worldwide
deployment; and a software development manager in charge of
software development and testing activities.

At that point, if little else, SIVI’s leadership team decided
to deliver versions on a strict schedule and because the
resources were fixed, the scope for the project would have to be
variable. This clarification of the project management triangle
[1] may not seem like an important step but it helped set the
scene for what followed and anchored many of the later
initiatives. It also helped address the predictability that was
expected by upper management.

B. From May 2010 to November 2010: Version 3.0

1) Definition of done
With GeoSigns/nDI version 2.0 delivered, the work

mandated under the investment proposal from late 2007 was
not complete and the conscious goal of the leadership team was
to deliver another incomplete version by the end of 2010. This
would help set the expectation that SIVI is able to deliver
incremental versions to its end-users, albeit incomplete and not
as robust as the majority of end-users would want for the time
being. The leadership team was getting acquainted with the full
scope of the investment proposal and it was not clear how
much of the initial planned scope had actually been done or
what done actually meant. Quite often, developers were first
implementing features based on vague requirements and then
went back—sometimes many months later—to fix defects.

In order to increase predictability and to transition towards
an iterative development model, with a proper backlog, the
leadership team deemed essential to formalize a definition of

Successfully bootstrapping a large scalable Scrum practice at Royal Dutch Shell

Copyright © 2012 by Shell Global Solutions (US) Inc. 3

Royal Dutch Shell Document Classification: Unrestricted

done that would include acceptance testing, regression testing,
and debugging.

2) ScrumMaster contributions
Early in this release cycle, the leadership team directed the

development teams to produce burndown and earned value
charts to assess the release cycle progress and increase
transparency. This was a total failure as this reporting activity
was impeding the teams’ progress, only managing to increase
their stress without providing usable results. It also clearly
demonstrated the need for better planning tools beside the
overly customized JIRA, a product from Atlassian, and
miscellaneous spreadsheets that were in use at the time, to plan
iterations and manage the backlog.

In July 2010, with the need to better understand the work of
those teams without burdening them further with additional
requests for reporting, the leadership team decided to contract
with one ScrumMaster. The ScrumMaster was working with
each development team, gathering data and providing
necessary information to the leadership team on what the next
steps in the implementation of an iterative software
development method might be without getting in the way of
those development teams.

Later that year, the ScrumMaster also trained SIVI to write
stories in preparation of version 4.0. This exercise led to a
better understanding of the backlog but was not as successful as
expected due to the lack of a proper planning tool. An
experiment on using index cards miserably failed because this
approach is not scalable and cards cannot be accessed remotely.

While some elements of Scrum were now in place, namely
the daily meetings, the definition of done, monthly iterations,
and a ScrumMaster, many basic elements were still missing.
Most notably, the size of the teams was inconsistent, and
implementing a given feature, per the definition of done,
required the intervention of multiple coordinated teams.

3) Running into trouble
During that time, the leadership team got a better

appreciation for the backlog, figured out which teams were
struggling to implement the scope, and which teams were not.
The ScrumMaster and the leadership team quickly figured out
that three development teams were struggling.

The first team (Team A) had trouble passing acceptance
tests. This team was in open conflict with the G&G who
provided the requirements. Without coordination with other
teams, this team had decided on an implementation route that
was involving a very high level of abstraction unprecedented in
the application—i.e. unsustainable by the most senior
developers on other teams. The ScrumMaster helped the team
narrow the scope, decompose the work in smaller increments,
and agree, with the impacted G&G, on acceptance criteria for
each of those increments. In addition, the unorthodox
implementation was rapidly abandoned.

The second team (Team B) was implementing an
overreaching low-level change in the application. The team had
started implementing this change a few years earlier, but they
had abandoned this effort leaving part of the change in our
Software Configuration Management (SCM) system mainline

for a couple of years. However, this effort was necessary to
handle onshore hydrocarbon reservoirs and because of this high
value, the leadership team decided to plow forward and add
additional resources to this effort.

The third team (Team C) was implementing an
overreaching change in a separate branch of the SCM system—
Subversion was used at the time. The leadership team decided
to postpone this effort until version 4.0.

4) A burgeoning User Interface Automated testing effort
In parallel with those software development efforts, one

individual, with the help of a couple of consultants, started
experimenting with User Interface (UI) Automated Tests based
on Squish, a testing framework published by froglogic. Using
Squish, testers can record a workflow and specify validation
points for this workflow. Then, either manually or as part of
continuous integration, one can replay the recorded workflow.
Squish launches the application, generates UI events, and for
each validation point, compares the recorded state with the
current replay. This tests if the application behaves as it did
when the workflow was recorded. This was a promising effort
that, once integrated in the continuous integration builds,
helped us detect some regression defects within hours of the
source code change that introduced them.

SIVI chose Squish for its UI Automated Tests needs
because GeoSigns/nDI uses Qt, an open source project, as its
UI framework and Squish is well suited to work with Qt
applications.

5) The importance of Software Engineering Excellence
SIVI was not alone in its quest to implement a Scrum

software development practice and received quite a bit of
assistance from the Software Engineering Excellence group
(SSEE).

a) Training

Among other symptoms, the three teams mentioned above
had trouble estimating their backlog, and the requirement
gathering process left much to be desired. These two problems
were two concrete examples of an extensive need for software
engineering basic training.

As part of a larger initiative, SSEE invited SIVI to
participate in estimation training during which most of us
learned about the notion of cone of uncertainty and the black
art of software estimation [3].

SIVI also participated in several other basic training courses
on such topics as requirements gathering, software inspections,
or testing. Portions of this training extended to Subsurface
Software (SSW) management so they could get familiar, if this
was not already the case, with software engineering essential
practices.

This training program helped establish a common
understanding of our software development practice across all
of SSW and help publicize our specific needs quite different
from research or the traditional G&G practice at Shell.

Successfully bootstrapping a large scalable Scrum practice at Royal Dutch Shell

Copyright © 2012 by Shell Global Solutions (US) Inc. 4

Royal Dutch Shell Document Classification: Unrestricted

b) Standards

Furthermore, SSEE helped us by publishing a set of
standards. Those standards are part of our foundation for a
successful software development practice and establish a
minimum baseline for: configuration management, estimation,
inspections, lifecycle, testing, security, risk management,
requirements, design, construction, export classification, and
third party development.

c) Health checks

Finally, SSEE is conducting yearly health checks by
interviewing individual groups and assessing their performance
around a variety of metrics. No group is ever always in the
green and it helps identify weaknesses, develop mitigation
plans and increase the overall effectiveness over time. Their
assessments are getting stricter over time to incentivize
continuous improvement.

6) The struggle to complete version 3.0
In October 2010, all developments teams except Team A

and B, who were unable to complete the scope initially defined
for version 3.0, stopped adding new features and started to fix
known defects. Team A and Team B continued to work on
their specified scope.

Our objective for version 3.0 was to fix all defects which
resulted from that development cycle or defects with a high
severity that had been introduced during version 1.0 or 2.0
development cycles. Unfortunately, this proved to be a colossal
effort and by the end of November, it was evident that SIVI
had a version 3.0 but it certainly was not meeting the quality
criteria hoped for. Since, GeoSigns/nDI contained many of the
features requested by our end-users, the leadership team
decided to declare victory and deploy version 3.0, with the
understanding that SIVI would continue to address more
defects and stop implementing new features—except for team
A and team B—until reaching the quality objective.

C. December 2010 to April 2011: Version 3.1

So, as SIVI concluded the year 2011, it was a mixed bag of
results, and many challenges still remained ahead.

On the positive side, as the end of the year arrived, SIVI
had a version 3.0 containing new features requested by end-
users; clarity on the project management triangle, a definition
of done; one ScrumMaster; some training on requirement
gathering, story writing, estimation, and code inspection; an
embryonic UI Automated Testing system running within our
continuous integration system; daily Scrum meetings; less
broken builds.

On the negative side, many individuals still had trouble
decomposing epics into small-enough stories, and grossly
underestimated development efforts. In addition, SIVI had a
large backlog of defects, mostly non-cross-functional teams,
and only one ScrumMaster.

The leadership team decided to first tackle the defect
backlog.

1) Enhancement to the defect backlog management

a) Cleaning the backlog

In late 2010, SIVI had about 1,400 items in the defect
backlog and a lot of them were not exactly actionable. Mixed
with the true defects, one could find requests for enhancements,
new features, or general comments. Once those non-defects
were identified and removed, remaining defects were referring
to non-existing datasets more often than not, or were missing
clear steps to reproduce. SIVI engaged in a systematic clean-
up, and worked hard fixing defects for three months and ended
up with a clean database containing about 300 actionable
defects.

Fixing or closing those 1,100 defects was only part of the
solution. Without additional precautions, SIVI was risking
falling in the same trap as before. It was imperative to maintain
a clean database in the long run. To do so, G&Gs decided that a
defect monitor would inspect all new incoming defects and
mercilessly reject those that were not actionable. The defect
monitor was to rotate every sprint.

b) Linear defect categorization, simple quality criteria

Each defects had four variables: impact, usage, priority,
and blocker: impact quantified the effect of the defect on the
application and could be set to high, medium, or low; usage
related to the number of end-users affected by the defect and
could also be set to high, medium, or low; priority was a
combination of usage and impact so [high impact, high usage]
defects had the highest priority while [low impact, low usage]
defects had the lowest priority; finally defects resulting from
regressions were flagged as blocker which could be set to true
or false.

Our defect tracking tool, JIRA, was unable to compute
priority given a set of impact and usage ratings. So one had to
set priority manually whenever impact or usage was changed
and this was not happening in practice. It was not clear how to
handle regression defects (i.e. blockers) because their priority
could vary greatly. In addition, impact and usage notions were
only vaguely defined and subject to many debates, or even
arguments. Finally, generating reports to assess the state of the
defect database was arduous and difficult to automate.

After much debate, the leadership team decided to collapse
those four categories—impact, usage, priority, blocker—into
one called severity, whose possible values are clearly defined.
The leadership team also settled on quality criteria, shown in
table I. As indicated in that table, SIVI addresses defects in
decreasing order of severity, but is leaving handling details to
the teams, the G&Gs, and the ScrumMasters.

TABLE I. QUALITY CRITERIA

Severity Quality Criteria When to fix

Regression Zero As soon as possible; preferably

before the end of the current
sprint

Critical Zero As early as next sprint

High Zero As early as next sprint

Medium Up to 50 defects As early as next sprint

Low No limit As early as less than 50 medium
defects are present

Successfully bootstrapping a large scalable Scrum practice at Royal Dutch Shell

Copyright © 2012 by Shell Global Solutions (US) Inc. 5

Royal Dutch Shell Document Classification: Unrestricted

This approach helped us better manage the defect backlog,
simplify communication, and help signal to all that SIVI needs
to meet the quality criteria at the end of a release cycle, but also
at the end of iterations.

The five possible values for severity are:

 Regression: This is a problem preventing a successful
build (such as broken automated tests) or a defect for a
function that worked before the current iteration. In
summary, a regression is something that used to work
and is now broken;

 Critical: Defects that cause disastrous consequences for
the system in question such as critical loss of data,
critical loss of system availability, critical loss of
security;

 High: Defects that cause very serious consequences
such as severely broken or incorrect functions or
algorithms, or broken functions that interrupt an
important work flow and that have no identified
workaround;

 Medium: Defects that cause significant consequences;
A defect that needs to be fixed but there is a
workaround, such as a badly broken function but with
a known workaround;

 Low: Defects that cause small consequences but that
are easy to work around, or trivial defects that cause no
negative consequences and produce no erroneous
outputs. Examples include misleading error messages,
displaying output in a font or format other than what
the customer is expecting, simple typos in
documentation, bad layout, or misspellings on screen.

By March 2011, SIVI successfully met the quality criteria
and delivered version 3.1 which was more stable than any other
GeoSigns/nDI or 123DI versions before. In addition, team A
and B completed the scope initially planned for 3.0 and
delivered it with 3.1.

D. April 2011 to December 2011: Version 4.0

It was nice to see version 3.1 out of the door but it was now
time to address some of the more systematic issues and fine
tune the delivery machine that SIVI was becoming.

1) Team Reorganization

a) Development Teams

Up to that point, the teams were predominantly organized
horizontally. SIVI had a database team, an infrastructure team,
a business logic team, a user interface team, a 3D graphic team,
etc. It also had some teams organized by feature but they were
depending on the horizontal teams to complete part of their
stories. This created some dependencies and hindered story
estimation as the work was split among separate groups.
Finally, some teams had ten individuals while other teams had
only one or two persons.

After careful consideration, the leadership team reorganized
the development group to promote cross-functional teams.
Now, in most instances, each team is able to implement stories

from beginning to end and therefore minimize inter-team
dependencies.

b) Quality Assurance team

Not only did the leadership team want to reorganize the
development team, they also wanted to increase the role of
Quality Assurance in the delivery process.

At that point, it is important to note that regression testing
and acceptance testing was solely the responsibility of the
G&Gs internal team—reporting to the product manager—while
debugging was the responsibility of the development teams. As
exhibited during the Construx Software assessment in 2010,
there were no professional testers or testing team per se.

Scrum advocates embedding testers in each development
team. While this model works fine when professional testers
are already present in the organization, the leadership team did
not find it suitable when the first objective was to acquire the
necessary skills to appropriately test the application.

The leadership team selected the individual who
experimented with UI automated testing in 2010—see II.B.4)
above—to be the QA team leader. The QA team developed its
own charter and hired a mix of SME, UI automation testing
specialists and professional testers to kick start the testing
effort.

Within a few months, the amount of testing greatly
increased. The UI automated tests went from just a handful to
over one hundred. Automated tests ran each night for a few
hours—the equivalent of approximately forty man-hours of
manual testing. This helped detect defects much earlier than
ever possible and helped populate the regression defects
backlog.

The QA Team also conducted some manual regression
testing in consultation with developers to target areas that could
have been affected by version 4.0 development activities.

This team also coordinated the User Acceptance Testing
(UAT) at the end of the release cycle to accompany and survey
end-users who tried out release candidates.

Overall, these efforts saved a very large amount of G&Gs
time, freeing them to focus on writing requirements and
accepting newly implemented stories.

So, testers are not embedded in each development team but
they provide shared services that benefit the whole group.

c) The role of team leaders

Scrum treats teams as whole entities and does not make
distinction among the individuals in a given team. However,
the leadership team decided for practical reasons, that one
individual in each team would be the team leader. Indeed, with
forty individuals, it is not practical, for developers, testers, and
continuous integration engineers to all report directly to one
person.

All team members participate equally in the three Scrum
ceremonies but team leaders participate in additional meetings
such as risk management or dependency meetings that aim at
increasing communication and facilitating the overall
development process.

Successfully bootstrapping a large scalable Scrum practice at Royal Dutch Shell

Copyright © 2012 by Shell Global Solutions (US) Inc. 6

Royal Dutch Shell Document Classification: Unrestricted

For assigning stories and defect backlog management
among teams, SIVI primarily operates within a pull model
where team leaders decide which team will handle which
stories. Sometimes, team leaders have difficulties deciding
which team should handle a given backlog item. In that case,
the product manager and the software development manager
make the assignment decision.

Team leaders also provide exploratory and budget estimates
[3] when grooming the backlog or planning for a release cycle.
The team members provide the commitment estimates when
they decompose stories into tasks during the planning meeting
at the beginning of a sprint.

Since SIVI is outsourcing some of its development work to
third parties, Team leaders are also responsible for defining and
approving work proposals; and accepting source code
deliveries.

d) ScrumMasters

So, after this reorganization, SIVI ended up with five
development teams and one QA team. The leadership team
decided to hire an additional ScrumMaster and let the two
ScrumMasters decide, in agreement with the team leaders, who
would be facilitating the work of which team.

The ScrumMasters play an essential role in safeguarding
the Scrum process. The ScrumMasters help the team estimate
their work, manage their day to day workflow, and identify
dependencies and risks.

But, above all, ScrumMasters monitor the backlog and
provide relevant metrics for teams to operate and leadership
team to make informed decisions.

e) Product Owners

As previously stated, SIVI’s G&Gs are reporting to the
product manager. They are the subject matter experts for
GeoSigns/nDI and they provide requirements for new features
to development teams.

In practice, development teams have the skills and
knowledge to implement feature requirements coming from
multiple G&Gs, and a G&G can give their requirements to
multiple teams. In other words, there is no one-to-one
relationship between G&Gs and development teams.

In effect, this situation led to a competition among the
G&Gs to lobby for the importance of their stories and to
request bandwidth from a development team to implement
those stories.

In case of a tie, the product manager had final say on the
priority of requirements. However, in June 2011, one
development team was dealing with six G&Gs and because the
team wanted to satisfy all those individuals in parallel. They
ended up working on many different stories concurrently rather
than sequentially. This was an extreme case, and probably an
anti-pattern. It clearly demonstrated that SIVI’s approach,
consisting in the product manager breaking ties between
G&Gs, was not sustainable.

Nevertheless, SIVI still needed to have the option to
distribute requirements from a G&G to more than one team and

teams to handle requirements from more than one G&G. SIVI
needed to alleviate the product manager workload and therefore
attempt to distribute the responsibility of prioritizing
requirements among its development teams.

SIVI ended up adopting the following approach: A given
G&G can have two roles: In the role of a product owner, the
G&G is responsible for managing the development team
backlog, grooming it as necessary, and prioritizing incoming
stories; in the role of a feature owner, a G&G is responsible for
providing requirements and writing stories.

Exactly one G&G is taking the role of product owner for a
given team and a G&G can be a feature owner for multiple
development teams.

This also implies that a product owner for one team can act
as a feature owner for his development team or for other
development teams.

This arrangement, clarified the role of product owner, and
helped us spread the product manager prioritization-
responsibilities on multiple teams.

Conflict over product owner and feature owners for a given
team may still occur but they are rarer and product owners act
as Cerberus for their team. This smoothes out the flow of
incoming stories and generate healthier prioritization debate.
The product owner still has to intervene on occasion, but
development teams are more self-sufficient as a consequence of
this change.

2) Backlog management and metrics
Up to that point, SIVI was still using a mix of spreadsheet,

heavily customized defect tracking system, and word processor
documents to keep track of the backlog. This was highly
inadequate and during the second quarter of 2011, SIVI started
using Team Foundation Server (TFS), a Microsoft product, to
track the feature backlog. While the need for a better planning
tool had been identified as early as April 2010 by the
leadership team, SIVI had to wait for the enterprise TFS
implementation to ramp up. SIVI augmented TFS planning
capabilities by using Urban Turtle, a brand developed by Pyxis
Technologies.

For many months, feature backlog was in TFS while
defects remained in JIRA. This was far from an ideal situation
but SIVI needed time to get familiar with TFS and to migrate
the defects from JIRA to TFS.

Given this effective way to manage our backlog, the two
ScrumMasters started gathering team velocity information,
publish SIVI sprint burndown chart. Admittedly, it took a little
bit of time for the development teams to accept that burndown
charts and velocities were a way for them to better estimate and
optimize their sprint commitments, and not a way for
management to gauge their productivity.

3) Fixed four-week sprints
SIVI was using monthly sprints but the leadership team

considered them to be impractical as it was tricky to schedule
Scrum ceremonies from sprint to sprint. For example, should
one schedule the review meeting on the last day of the month
or the first business day after that? In addition, most recurring

Successfully bootstrapping a large scalable Scrum practice at Royal Dutch Shell

Copyright © 2012 by Shell Global Solutions (US) Inc. 7

Royal Dutch Shell Document Classification: Unrestricted

routine meetings occur weekly or on a semi-weekly basis in
Shell. For those reasons, the leadership team needed to adjust
the sprint length.

It was important to adopt the same sprint length for all
development teams as they are working on the same product
and this requires a high level of coordination [5].

Since Scrum [6] recommends a sprint length shorter than 30
days, the leadership team decided on four-week sprints.

Four-week sprints are close enough to monthly sprints; they
have the same benefits of a monthly sprint without the
scheduling headaches. Shorter two-week sprints were also
considered but it would have been another big adjustment for
the team.

Since this decision, some team leaders have suggested
shorter iterations while others would like to have the flexibility
to modify the iteration length. For scalability and coordination
reasons, the leadership team decided to stick to four-week
sprints for the time being.

Development teams are celebrating the end of each sprint
with a trip to a local restaurant or a group outing where they
mingle with other teams.

4) The Rules of Scrum
In the fields of education and operations research, the

Dreyfus model of skill acquisition is a model of how students
acquire skills through formal instruction and practicing. Stuart
and Hubert Dreyfus proposed the model in 1980 in an
influential, 18-page report on their research at the University of
California, Berkeley [7][8]. The original model proposes that a
student passes through five distinct stages: novice, advanced
beginner, competent, proficient, and expert.

In 2010, while coaching Scrum teams at Landmark
Graphics, an Oil & Gas independent software vendor, Jaron
Lambert and Simon Orrell, applied the Dreyfus model to
Scrum [4]. In April 2011, they gave a seminar on this topic and
freely shared the rules they had been using. Slightly modifying
this initial set, leadership team and ScrumMasters developed
the SIVI rules of Scrum.

At first, this generated some heated debate and discussions
in SIVI and some team members saw the rules as a scourge.
However, those rules clearly established a common base for all
the individuals in the group by clarifying Scrum basics and
easing internal communications. As the group is climbing the
five-stage ladder of skill acquisition, Scrum rules are less
mentioned, but they are still in effect, and they played a critical
role in cementing SIVI Scrum practice.

5) A few mishaps before a resounding success
That release cycle was not without a few hiccups which are

worth mentioning even though they are not as severe as the
problems encountered in 2010.

a) Too many changes in a short period of time

Every year, Shell conducts a global survey to gauge
employee morale and satisfaction. The latest survey, conducted
in May 2011, shows that initiating many changes over a short
period of time during spring 2011 created quite a bit of stress

for the staff and many complained of a lack of autonomy
during that period.

b) The difficulty to maintain a low defect count

SIVI started this release cycle with about 300 defects in the
database and this number slowly crept up over the months to
reach about 450 in September. While some in the leadership
team advocated for a continuous debugging effort, there was
also pressure to complete the backlog. As a result, the release
cycle had to end with a couple of sprints dedicated to
debugging.

c) Haunted by ghosts from the past

As you may remember, Team B struggled to implement an
overreaching low-level change in the application during the
version 3.0 release cycle and they completed the scope with
version 3.1 in March 2011.

However, during the summer 2011, the leadership team
received some alarming reports from two asset teams who were
experiencing some difficulties with the new features
implemented by Team B. An asset team is a group of end-users
who are working on a specific area of the world in search of
hydrocarbons.

Those two groups were under pressure to complete their
work using GeoSigns/nDI and SIVI had to send developers and
G&G on site to analyze and fix the remaining issues. This
negatively impacted the version 4.0 scope.

d) Success and celebration

Finally, thanks to the team reorganization exercise, better
backlog management, velocity measurements, regular sprints,
and rules of Scrum, and a lot of hard work, version 4.0
development cycle ended up being a great success in December
2011. This latest version not only contains the initial scope
funded in late 2007 but also some additional industrialized
research that was not mature enough when the initial scope was
defined. SIVI invited some retired staff to join one hundred
other guests to the celebration.

III. LESSONS LEARNED

I am part of the leadership team whose peregrinations are
described in this article. Based on this journey, and if faced
with similar challenges to those encountered by SIVI in 2009, I
would keep the following lessons in mind.

This experience taught me that it is critical to clarify the
project management triangle when approaching a software
development effort. This is fundamental but easily forgotten
when facing external and internal pressures. Often, end-users
care a lot about predictability which means that the schedule
has to be fixed. Since the resources are often also fixed, in
order to bring an effort to completion on time, splitting the
scope in multiple manageable development cycles is necessary.

We also discovered that this was not enough because even
if the scope is flexible, it is important to know when a given
feature is complete or not. A clear definition of done, early in
the GeoSigns/nDI development effort would have benefited
end-users and SIVI development group.

Successfully bootstrapping a large scalable Scrum practice at Royal Dutch Shell

Copyright © 2012 by Shell Global Solutions (US) Inc. 8

Royal Dutch Shell Document Classification: Unrestricted

I made the mistake of wanting metrics too early in the
process. Burdening an already stressed group of individuals
with providing measures for the process was not a wise
decision. However, contracting an agile coach or, in our case a
ScrumMaster to gather data and get the pulse of the
development group was useful. This helped us diagnose
problematic situations more precisely.

I suffered from the lack of a proper planning tool well until
mid-2011 and with a large group of people working on one
project with numerous dependencies, this is an essential
change. Index cards can help some but this is not a scalable
solution. I would try to bring a planning tool earlier in the
transformation process.

Each development team has its own personality, often
linked to its leader’s personality. For example, we found a
different set of circumstances—internal and external—leading
to the struggles of teams A, B, and C. Each team had to be
addressed separately since their challenges were specific.
However, we found necessary to set a common cadence for
multiple teams, such as the four-week sprint duration or the
rules of scrum. One of the most successful teams has
considered this cadence to be an imposing bridle. Managing a
large group of people working on the same application is a
balancing act between the need for common processes and the
need for autonomy.

We found that providing a common set of rules, getting our
inspiration from the Dreyfus model of skill acquisitions, has
helped established a commonality among the teams and the
multiple trainings also helped in that regard. Each team has to
find its autonomy within the group akin to an individual in a
scrum team.

The sprint duration change, the team reorganization, and
the rules of scrum deployment really had a negative impact on
morale. Not only did the teams have the mandate to deliver but
they had to do it within a set of rules for which they did not
provide input. At this point, I am not sure if making all those
changes at once, close to the beginning of a release cycle was a
mistake or not. On one hand, this had a negative impact on
morale but on the other hand, one year later, it seems that most
individuals have not only adjusted but are thriving.

Over the course of a few months, and as a result of
retrospectives and dedicated discussions, a self-selected group
reviewed and enhanced some of the processes that had been
initially imposed by the leadership team.

I still believe that a top down approach is necessary in
some cases because of urgency but those decisions must be
accompanied by clear communication and commitment to
approve later changes when they benefit the whole group.

I have also learned that forming a team dedicated to QA
and testing is effective. My natural instinct was to follow the
scrum approach and embed a tester in each development team
but a dedicated team can be effective in quickly raising the skill
level for the whole group.

In our case, setting a quality criterion, based on the number
of defects has been effective in slowly increasing the quality of
the overall product. However, it requires clear and concise
severity definition, and an appropriate defect triage process
emphasizing defect actionability. We are not yet convinced of
our system effectiveness.

Lastly, I must admit that I was confused on the best way to
handle the product owner role. Our product owner, and feature
owner roles have been a struggle to establish initially but as a
result, our teams operates more effectively.

Now that we have a scalable scrum practice, we are putting
it to the test. We have engaged in two separate efforts that have
not born fruits yet: we created a dedicated User Experience
team which will help us acquire more skill and knowledge in
the domain that we are unfamiliar with; we are working on
understanding how to effectively let our end-users preview our
software at the end of every sprint. Both those initiatives
leverage the lessons learned during this two-year journey and
involve more collaboration than a bare top-down decision from
the leadership team.

ACKNOWLEDGMENT

I want to thank Tom Riddle and Daniel Fremion for their
unflagging support; Alan Jackson, Doug Tudor, and Rene
Villafuerte for battling with me on many occasions and setting
me straight in quite a few; Kevin Wright, Andrew Kennedy,
our ScrumMasters, for their unabated efforts; SIVI, SSEE, and
Bluware staff, for their hard work, ingenuity and dedication to
our success; Our contracting partners for their timely and high-
quality work; Construx staff for enlightening me in many
occasions and providing invaluable advice along the way.

Without all those individuals, there would be no journey,
and no success.

REFERENCES

[1] M. Newell, G. Marina, The Project Management Question and Answer
Book. New York, NY: AMACOM, American Management Association,
2004, p. 8.

[2] G. Moore, Crossing the Chasm: Marketing and Selling High-Tech
Products to Mainstream Customers. New York, NY. HarperBusiness,
1999.

[3] S. McConnell, Software Estimation: Demystifying the Black Art.
Redmond, WA: Microsoft, 2006.

[4] S. Orrell, J. Lambert, Applying the Dreyfus Learning Model to Focus
your Coaching Approach.
http://program2011.agilealliance.org/event/4eb7866112a4b6b96f44e32
8e9885a3a, August 2011

[5] E. Woodward, S. Surdek, M. Ganis, A practical guide to Distributed
Scrum. Boston, MA: IBM Press, 2010, pp. 58–59

[6] K. Schwaber, J. Sutherland, Scrum Guide.
http://www.scrum.org/scrumguides/, October 2011

[7] S. Dreyfus, H. Dreyfus, A Five-Stage Model of the Mental Activities
Involved in Directed Skill Acquisition, Washington, DC: Storming
Media, February 1980.

[8] S. Dreyfus, ―The Five-Stage Model of Adult Skill Acquisition,‖ Bulletin
of Science, Technology and Society, vol. 24, issue 3, June 2004, pp.
177-81

